

Seoul National University

Technology Overview

1. Background of Technology

1.1. Amyloid hypothesis in Alzheimer's disease

- Clinical association of amyloid42 oligomers with Alzheimer's disease
 - : Detection of amyloid42 oligomers in the brain of AD patients
 - : Apparent evidence for the role of amyloid42 oligomer in AD Pathology
 - : High ratio of Amyloid 42/40 for pathology

1.2. Amyloid42 receptors: not successful yet

- RAGE (Nature 1996)
 - : Role in amyloid transport in BBB (2008, 2009, ICAD)
 - : However, a role in the memory impairment of AD is not clear
- ABAD (Science 2005)
 - : Role in mitochondria for amyloid toxicity
 - : However, a role of ABAD in the memory impairment of AD is not clear
- -Prion (Nature 2009) etc.
 - : Role in LPT
 - : However, a role in the memory impairment of AD is not clear yet.

1.3. Limited available targets in the amyloid pathology for drug development in AD

- Beta, gamma secretases are good targets but development of inhibitors have problems.
 - : Gamma-secretase: too many substrates
 - : Beta secretase: Difficulty to design inhibitor in brain
- -Aggregation blockers, amyloid antibody etc.
 - : Long history, being tried by many groups.

1,4. Looking for New therapeutic targets

-Additional new targets are needed.

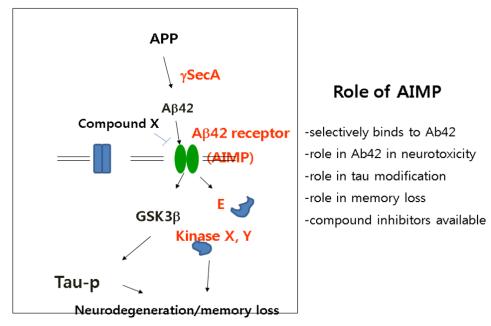
2. Description on Technology Applied

2.1. Amyloid 42-binding receptor (AIMP) discovered

- -Interaction was confirmed in in vitro and cell level
- -Amyloid42-selective interaction (Amyloid40 not bound))

- -Monomer and oligomeric forms of amyloid42 bind to AIMP receptor
- -Binding region was identified by in silico modeling and by mutagenesis

2.2. Role of the amyloid receptor in amyloid pathogenesis


- -Increased expression of AIMP in the brains of AD and APP moce
- -Essential role of AIMP receptor in neurotoxicity and Tau phosphorylation in cultured neuronal cells
- -Inhibition of amyloid42-induced memory impairment in AIMP receptor KO mice (icv injection)
- -No reduction in amyloid42-induced LTP in the brain of AIMP receptor KO mice.
- -AIMP KO/PDAPP double transgenic mice rescue memory impairment of PDAPP mice.
- -There is another ligand for the receptor and thus, selective inhibition is required to avoid unwanted effects.

2.3. Small compound inhibitor (inhibitor X) against amyloid receptor:

- -AIMP inhibitor compound Isolated from in silico modeling
- : Using in silico-modeling of the receptor and amyoid42, one million compounds were screened.
 - In vitro, in vivo effects: Inhibition of receptor-mediated memory impairments
 - : AIMP inhibitor inhibits the interaction of amyloid42 with AIMP
 - : AIMP inhibitor inhibits amyloid42-induced neuronal toxicity in vitro
- : AIMP inhibitor inhibits amyloid42-induced memory impairment (memory test after amyloid42 i.c.v. injection).
 - : AIMP plays a role in neuronal transport of amyloid42
 - : Being tested for BBB transport.

Taken together, these in vitro and in vivo analysis of AIMP and its inhibitor provide a proof of concept that AIMP may serve as a receptor of amyloid42 (Fig. 1)

(Fig. 1) Schematic diagram for the role of AIMP receptor in amyloid pathology.

3. Differential Point, Superiority or Characteristics of Technology Applied

3.1. New receptor of amyloid42 for amyloid pathogenesis

: AIMP receptor plays a key role in amyloid42-mediatedneurotoxicity and memory loss, while RAGE and ABABD have different roles.

: Role of AIMP in neuronal transport of amyloid42.

3.2. AIMP receptor Knockout mice are viable but show autoimmunity when it is getting old.

: Selective inhibition of the binding of amyloid42 to AIMP receptor $\,$

3.3. Competitive new target for AD therapeutics

: From analysis of double transgenic mice (AIMP receptor KO/PDAPP tg), we found that AIMP receptor may serve as a target for AD therapeutics.

3.4. Compound inhibitor interefering the binding of amyloid42 to AIMP receptor

: We have compounds that inhibit the binding of amyloid42 to AIMP and needs to further characterization for selective inhibition. However, the target may reserve as a novel target.

3.5. Receptor downstream mediator is being characterized for neuronal selectivity.

: We are also looking for neuronal specific amyloid42 signaling mediators as a target.

Specific Patent and Publication Information

No.	Name of Patent	Application No.	Date of application /approval	Country	Status (Applied/approval)	Cost for patent (KRW)
1	Compositions and method for the diagnosis, prevention and treatment of Alzheimer's disease	PCT/KR2008/006570	2008.11.7	PCT	applied	

^{**} Please provide accurate information for Application No and Date of application/approval. It will be used for patent search.

 $[\]divideontimes$ In case of Cost for patent, please consider administrative cost for patent application only.

^{**} In case of PCT or overseas patent (application) except domestic patent, Please attach a certificate of application/approval (or patent abstract) as a separate file.