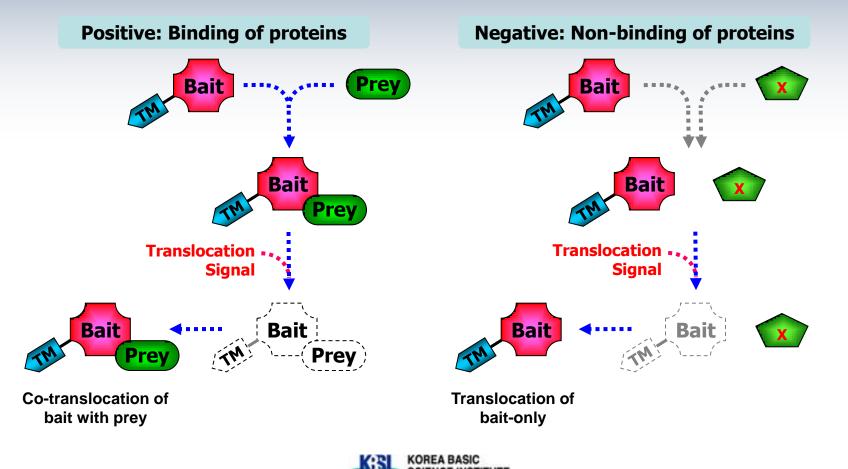


CUPID (Cell-based Un-/identified Protein Interaction Discovery)

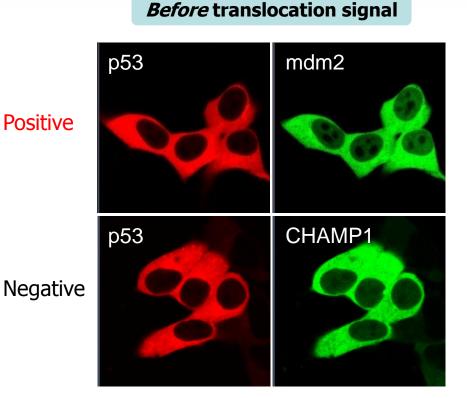
Protein-protein Interactions (PPIs) as a Drug Target

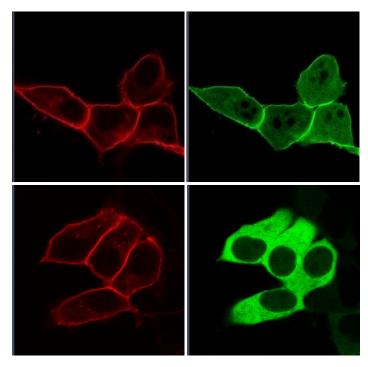
- Unlike genes of the genome, there are numerous cellular functions of proteins that are carried out by proteins interacted with other proteins.
- Development of targeting PPI technology is critical in enhancing or shutting down key downstream events of signal transduction pathways and then modulate cellular functions.

Limitations of Conventional Drug Target Approaches


- Difficulty of optimizing PPI-pairs between bait and prey (FRET, BiFC)
- Difficulty of utilizing traditional PPI technologies to identify protein-protein interaction site, peptides targeting PPI sites, and small molecule binding site on/in a PPI
- Difficulty in characterizing involvement of more than two proteins in the complex
- Requirement of antibodies (IP), purification steps (GST-pull down), and other substrates
- Requirement of expensive instruments and technologies such as analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), nuclear magnetic resonance (NMR), X-ray crystallography, and fluorescence correlation spectroscopy (FCS).

Concept of *CUPID* Technology


Active co-translocation event of bait and prey reflects the binding status of a bait-prey complex (protein-protein interaction)



Result Section

- Positive: Active co-translocation of bait (p53, red) and prey (mdm2, green) to cellular membrane reflects the binding status of the complex.
- Negative: Only bait (p53, red) is translocated to cellular membrane while prey (CHAMP1, green) stays in cytoplasm.

After translocation signal

Health Technology Transfer Cente

Advantages of **CUPID**

Native Environment:

- No need for excessive artificial synthetic substrate
- ✓ Intact Cellular Context: Authentic physiological conditions
- ✓ No purification of bait/prey proteins
- \checkmark No need antibodies for bait or prey
- ✓ No expensive equipment for experiment

• Native Conformation of proteins:

- Full-length proteins with correct folding and post-translational modifications
- ✓ Expressed in human cells
- Avoiding denaturation of proteins by artificial buffer
- No modification (truncation, deletion, etc) expression and/or purification of proteins
- No optimization to avoid topological hindrance
- Novel drug-target interactions can be elucidated:
 - Simple detection of protein-protein interactions by conventional fluorescence microscopy
 - ✓ Real-time monitoring possible within a few minutes
 - ✓ Differentiation of different signaling cues
 - ✓ Elimination of false positive results from indirect reporter assays such as IP, Y2H, FRET, BiFC, and FCS

Health Technology Transfer Cente

Applications what we have done with CUPID technology

Dimer bindings

- Cytoplasmic proteins:
 - ✓ Raf1 vs. MEK2, MEK2 vs. ERK2
 - ✓ ERK2 vs. p90RSK, KSR1 vs. 14-3-3
 - ✓ p38AIMP2 vs. complex-forming ARSs
 - ✓ NFkB vs. lkB
- Nuclear proteins:
 - ✓ p53 vs. mdm2, p53 vs. SV40 T antigen
 - ✓ RelA vs. p50

Peptide-Protein bindings

- ✓ p53 domain vs. hdm2
- ✓ TAB1 domain vs. TAK1

(Osteoclast, Bacterial Infection, etc)

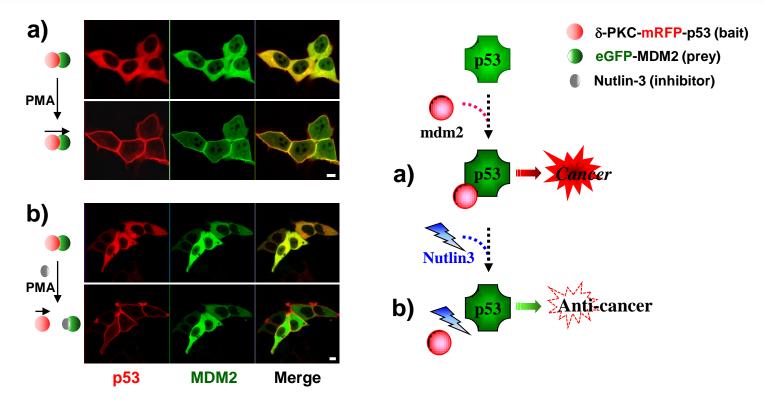
Multimer bindings

- 3-mer bindings:
 - ✓ NFkB/IkB (ReIA/p50/IkB) (Multiple Myeloma)
 - ✓ AIMP1/AIMP2/KARS (Lung Cancer, etc)
 - ✓ NICD/RBPJk/MAM (Branin Cancer, etc)
- 4-mer bindings:
 ✓ AIMP1/AIMP2/KARS/DARS
- 5-mer bindings:
 ✓ AIMP1/AIMP2/KARS/DARS/RARS

Inhibitor Screenings

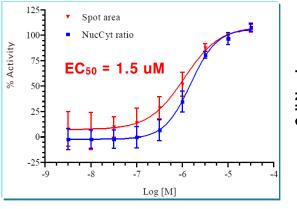
- ✓ Nutlin-3 for p53-hdm2 interaction (Hodgkin Lymphoma, etc)
- ✓ U0126 and PD98059 for ERK2-p90RSK (Breast Cancer, etc)

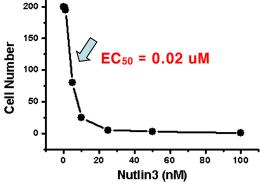
Compound-mediated Interaction & Its Inhibition


- ✓ Rapamycin-mediated mTOR-FKBP binding (Immunosuppressant, etc)
- ✓ Inhibition of Rapamycin-mediated mTOR-FKBP binding complex by FK506 (Inflammation, etc)

p53-mdm2 binding and their inhibition

The small molecular inhibitor Nutlin-3 is a cis-imidazoline analogue commonly used in anticancer studies that inhibits the interaction between p53 and mdm2





Comparison of Nutlin-3 inhibition curves from 3 different PPI technologies

- In vitro SPR assay : $IC_{50} = 0.09 \ \mu M$
- *In cell* GRIP assay : $EC_{50} = 1.5 \mu M$
 - In cell CUPID assay : $EC_{50} = 0.02 \mu M$
- 100 75 13.6 µM C₅₀: 0.09 uM 50 25 -0 0.01 0.1 10 100 Concentration (µM)

Surface Plasmon Resonance: (Science 303, 844-848, 2004)

GRIP Redistribution assay (www.thermo.com/hcs)

CUPID anlaysis (Angewante Chemie Intl. Ed. 50, 1314-1317, 2011)

Proposed Further Applications

1. Target Identification

 Determination of target for unidentified protein-protein interaction partners or validation of specific protein-protein interaction pairs

2. Inhibitor Screening

 Determination of candidate chemical inhibitors for targeted protein-protein interaction pairs

3. Peptide Inhibitor Screening

 ✓ Determination of core-binding site (binding domain) and generation of peptide inhibitors

4. Drug Repositioning

- ✓ Exploration of unknown targets with known compound
- **5. Complementation & Validation of Results from Conventional Methods**
 - ✓ Confirmation and validation of targets for specific PPI pairs

Validation of CUPID Technology

Patents and Paper

- ✓ Korea, 10-0948767 (Mar. 12, 2010), registered
- ✓ Korea, 10-2010-0037714 (Apr. 23, 2010), filed
- ✓ USA, 12/547,943 (Aug. 25, 2009), filed
- ✓ EU, 09168598.2 (Aug. 25, 2009) , filed
- ✓ Japan, 2009-198750 (Aug. 28, 2009) , filed
- ✓ Angew Chem Int Ed (2011) 50, 1314

National Research Project

- Development of drug target discovery systems using CLSM an FCS (Korea Basic Science Institute, 2009-2010)
- Development of targeted drug screening system
 (The Small & Medium Business Administration, 2009-2011)
- ✓ Development of UTOPIA system for high contents screening of CUPID technology (Korea Basic Science Institute, 2010-2011)
- Pioneer research project (Ministry of Education Science and Technology, PGA043, 2010-2014)

